(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0) → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0') → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0' → n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0') → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0' → n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Types:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
isNat,
activate,
U31,
plusThey will be analysed ascendingly in the following order:
isNat = activate
isNat = U31
isNat = plus
activate = U31
activate = plus
U31 = plus
(6) Obligation:
Innermost TRS:
Rules:
U11(
tt,
V2) →
U12(
isNat(
activate(
V2)))
U12(
tt) →
ttU21(
tt) →
ttU31(
tt,
N) →
activate(
N)
U41(
tt,
M,
N) →
U42(
isNat(
activate(
N)),
activate(
M),
activate(
N))
U42(
tt,
M,
N) →
s(
plus(
activate(
N),
activate(
M)))
isNat(
n__0) →
ttisNat(
n__plus(
V1,
V2)) →
U11(
isNat(
activate(
V1)),
activate(
V2))
isNat(
n__s(
V1)) →
U21(
isNat(
activate(
V1)))
plus(
N,
0') →
U31(
isNat(
N),
N)
plus(
N,
s(
M)) →
U41(
isNat(
M),
M,
N)
0' →
n__0plus(
X1,
X2) →
n__plus(
X1,
X2)
s(
X) →
n__s(
X)
activate(
n__0) →
0'activate(
n__plus(
X1,
X2)) →
plus(
activate(
X1),
activate(
X2))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
X) →
XTypes:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s
Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)
The following defined symbols remain to be analysed:
activate, isNat, U31, plus
They will be analysed ascendingly in the following order:
isNat = activate
isNat = U31
isNat = plus
activate = U31
activate = plus
U31 = plus
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
activate(
gen_n__0:n__plus:n__s3_3(
n5_3)) →
gen_n__0:n__plus:n__s3_3(
n5_3), rt ∈ Ω(1 + n5
3)
Induction Base:
activate(gen_n__0:n__plus:n__s3_3(0)) →RΩ(1)
gen_n__0:n__plus:n__s3_3(0)
Induction Step:
activate(gen_n__0:n__plus:n__s3_3(+(n5_3, 1))) →RΩ(1)
plus(activate(gen_n__0:n__plus:n__s3_3(n5_3)), activate(n__0)) →IH
plus(gen_n__0:n__plus:n__s3_3(c6_3), activate(n__0)) →RΩ(1)
plus(gen_n__0:n__plus:n__s3_3(n5_3), n__0) →RΩ(1)
n__plus(gen_n__0:n__plus:n__s3_3(n5_3), n__0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
U11(
tt,
V2) →
U12(
isNat(
activate(
V2)))
U12(
tt) →
ttU21(
tt) →
ttU31(
tt,
N) →
activate(
N)
U41(
tt,
M,
N) →
U42(
isNat(
activate(
N)),
activate(
M),
activate(
N))
U42(
tt,
M,
N) →
s(
plus(
activate(
N),
activate(
M)))
isNat(
n__0) →
ttisNat(
n__plus(
V1,
V2)) →
U11(
isNat(
activate(
V1)),
activate(
V2))
isNat(
n__s(
V1)) →
U21(
isNat(
activate(
V1)))
plus(
N,
0') →
U31(
isNat(
N),
N)
plus(
N,
s(
M)) →
U41(
isNat(
M),
M,
N)
0' →
n__0plus(
X1,
X2) →
n__plus(
X1,
X2)
s(
X) →
n__s(
X)
activate(
n__0) →
0'activate(
n__plus(
X1,
X2)) →
plus(
activate(
X1),
activate(
X2))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
X) →
XTypes:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s
Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n5_3)) → gen_n__0:n__plus:n__s3_3(n5_3), rt ∈ Ω(1 + n53)
Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)
The following defined symbols remain to be analysed:
plus, isNat, U31
They will be analysed ascendingly in the following order:
isNat = activate
isNat = U31
isNat = plus
activate = U31
activate = plus
U31 = plus
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol plus.
(11) Obligation:
Innermost TRS:
Rules:
U11(
tt,
V2) →
U12(
isNat(
activate(
V2)))
U12(
tt) →
ttU21(
tt) →
ttU31(
tt,
N) →
activate(
N)
U41(
tt,
M,
N) →
U42(
isNat(
activate(
N)),
activate(
M),
activate(
N))
U42(
tt,
M,
N) →
s(
plus(
activate(
N),
activate(
M)))
isNat(
n__0) →
ttisNat(
n__plus(
V1,
V2)) →
U11(
isNat(
activate(
V1)),
activate(
V2))
isNat(
n__s(
V1)) →
U21(
isNat(
activate(
V1)))
plus(
N,
0') →
U31(
isNat(
N),
N)
plus(
N,
s(
M)) →
U41(
isNat(
M),
M,
N)
0' →
n__0plus(
X1,
X2) →
n__plus(
X1,
X2)
s(
X) →
n__s(
X)
activate(
n__0) →
0'activate(
n__plus(
X1,
X2)) →
plus(
activate(
X1),
activate(
X2))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
X) →
XTypes:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s
Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n5_3)) → gen_n__0:n__plus:n__s3_3(n5_3), rt ∈ Ω(1 + n53)
Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)
The following defined symbols remain to be analysed:
U31, isNat
They will be analysed ascendingly in the following order:
isNat = activate
isNat = U31
isNat = plus
activate = U31
activate = plus
U31 = plus
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol U31.
(13) Obligation:
Innermost TRS:
Rules:
U11(
tt,
V2) →
U12(
isNat(
activate(
V2)))
U12(
tt) →
ttU21(
tt) →
ttU31(
tt,
N) →
activate(
N)
U41(
tt,
M,
N) →
U42(
isNat(
activate(
N)),
activate(
M),
activate(
N))
U42(
tt,
M,
N) →
s(
plus(
activate(
N),
activate(
M)))
isNat(
n__0) →
ttisNat(
n__plus(
V1,
V2)) →
U11(
isNat(
activate(
V1)),
activate(
V2))
isNat(
n__s(
V1)) →
U21(
isNat(
activate(
V1)))
plus(
N,
0') →
U31(
isNat(
N),
N)
plus(
N,
s(
M)) →
U41(
isNat(
M),
M,
N)
0' →
n__0plus(
X1,
X2) →
n__plus(
X1,
X2)
s(
X) →
n__s(
X)
activate(
n__0) →
0'activate(
n__plus(
X1,
X2)) →
plus(
activate(
X1),
activate(
X2))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
X) →
XTypes:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s
Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n5_3)) → gen_n__0:n__plus:n__s3_3(n5_3), rt ∈ Ω(1 + n53)
Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)
The following defined symbols remain to be analysed:
isNat
They will be analysed ascendingly in the following order:
isNat = activate
isNat = U31
isNat = plus
activate = U31
activate = plus
U31 = plus
(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
isNat(
gen_n__0:n__plus:n__s3_3(
n2331_3)) →
tt, rt ∈ Ω(1 + n2331
3 + n2331
32)
Induction Base:
isNat(gen_n__0:n__plus:n__s3_3(0)) →RΩ(1)
tt
Induction Step:
isNat(gen_n__0:n__plus:n__s3_3(+(n2331_3, 1))) →RΩ(1)
U11(isNat(activate(gen_n__0:n__plus:n__s3_3(n2331_3))), activate(n__0)) →LΩ(1 + n23313)
U11(isNat(gen_n__0:n__plus:n__s3_3(n2331_3)), activate(n__0)) →IH
U11(tt, activate(n__0)) →LΩ(1)
U11(tt, gen_n__0:n__plus:n__s3_3(0)) →RΩ(1)
U12(isNat(activate(gen_n__0:n__plus:n__s3_3(0)))) →LΩ(1)
U12(isNat(gen_n__0:n__plus:n__s3_3(0))) →RΩ(1)
U12(tt) →RΩ(1)
tt
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(15) Complex Obligation (BEST)
(16) Obligation:
Innermost TRS:
Rules:
U11(
tt,
V2) →
U12(
isNat(
activate(
V2)))
U12(
tt) →
ttU21(
tt) →
ttU31(
tt,
N) →
activate(
N)
U41(
tt,
M,
N) →
U42(
isNat(
activate(
N)),
activate(
M),
activate(
N))
U42(
tt,
M,
N) →
s(
plus(
activate(
N),
activate(
M)))
isNat(
n__0) →
ttisNat(
n__plus(
V1,
V2)) →
U11(
isNat(
activate(
V1)),
activate(
V2))
isNat(
n__s(
V1)) →
U21(
isNat(
activate(
V1)))
plus(
N,
0') →
U31(
isNat(
N),
N)
plus(
N,
s(
M)) →
U41(
isNat(
M),
M,
N)
0' →
n__0plus(
X1,
X2) →
n__plus(
X1,
X2)
s(
X) →
n__s(
X)
activate(
n__0) →
0'activate(
n__plus(
X1,
X2)) →
plus(
activate(
X1),
activate(
X2))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
X) →
XTypes:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s
Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n5_3)) → gen_n__0:n__plus:n__s3_3(n5_3), rt ∈ Ω(1 + n53)
isNat(gen_n__0:n__plus:n__s3_3(n2331_3)) → tt, rt ∈ Ω(1 + n23313 + n233132)
Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)
The following defined symbols remain to be analysed:
activate, U31, plus
They will be analysed ascendingly in the following order:
isNat = activate
isNat = U31
isNat = plus
activate = U31
activate = plus
U31 = plus
(17) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
activate(
gen_n__0:n__plus:n__s3_3(
n3960_3)) →
gen_n__0:n__plus:n__s3_3(
n3960_3), rt ∈ Ω(1 + n3960
3)
Induction Base:
activate(gen_n__0:n__plus:n__s3_3(0)) →RΩ(1)
gen_n__0:n__plus:n__s3_3(0)
Induction Step:
activate(gen_n__0:n__plus:n__s3_3(+(n3960_3, 1))) →RΩ(1)
plus(activate(gen_n__0:n__plus:n__s3_3(n3960_3)), activate(n__0)) →IH
plus(gen_n__0:n__plus:n__s3_3(c3961_3), activate(n__0)) →RΩ(1)
plus(gen_n__0:n__plus:n__s3_3(n3960_3), n__0) →RΩ(1)
n__plus(gen_n__0:n__plus:n__s3_3(n3960_3), n__0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(18) Complex Obligation (BEST)
(19) Obligation:
Innermost TRS:
Rules:
U11(
tt,
V2) →
U12(
isNat(
activate(
V2)))
U12(
tt) →
ttU21(
tt) →
ttU31(
tt,
N) →
activate(
N)
U41(
tt,
M,
N) →
U42(
isNat(
activate(
N)),
activate(
M),
activate(
N))
U42(
tt,
M,
N) →
s(
plus(
activate(
N),
activate(
M)))
isNat(
n__0) →
ttisNat(
n__plus(
V1,
V2)) →
U11(
isNat(
activate(
V1)),
activate(
V2))
isNat(
n__s(
V1)) →
U21(
isNat(
activate(
V1)))
plus(
N,
0') →
U31(
isNat(
N),
N)
plus(
N,
s(
M)) →
U41(
isNat(
M),
M,
N)
0' →
n__0plus(
X1,
X2) →
n__plus(
X1,
X2)
s(
X) →
n__s(
X)
activate(
n__0) →
0'activate(
n__plus(
X1,
X2)) →
plus(
activate(
X1),
activate(
X2))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
X) →
XTypes:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s
Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n3960_3)) → gen_n__0:n__plus:n__s3_3(n3960_3), rt ∈ Ω(1 + n39603)
isNat(gen_n__0:n__plus:n__s3_3(n2331_3)) → tt, rt ∈ Ω(1 + n23313 + n233132)
Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)
The following defined symbols remain to be analysed:
plus, U31
They will be analysed ascendingly in the following order:
isNat = activate
isNat = U31
isNat = plus
activate = U31
activate = plus
U31 = plus
(20) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol plus.
(21) Obligation:
Innermost TRS:
Rules:
U11(
tt,
V2) →
U12(
isNat(
activate(
V2)))
U12(
tt) →
ttU21(
tt) →
ttU31(
tt,
N) →
activate(
N)
U41(
tt,
M,
N) →
U42(
isNat(
activate(
N)),
activate(
M),
activate(
N))
U42(
tt,
M,
N) →
s(
plus(
activate(
N),
activate(
M)))
isNat(
n__0) →
ttisNat(
n__plus(
V1,
V2)) →
U11(
isNat(
activate(
V1)),
activate(
V2))
isNat(
n__s(
V1)) →
U21(
isNat(
activate(
V1)))
plus(
N,
0') →
U31(
isNat(
N),
N)
plus(
N,
s(
M)) →
U41(
isNat(
M),
M,
N)
0' →
n__0plus(
X1,
X2) →
n__plus(
X1,
X2)
s(
X) →
n__s(
X)
activate(
n__0) →
0'activate(
n__plus(
X1,
X2)) →
plus(
activate(
X1),
activate(
X2))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
X) →
XTypes:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s
Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n3960_3)) → gen_n__0:n__plus:n__s3_3(n3960_3), rt ∈ Ω(1 + n39603)
isNat(gen_n__0:n__plus:n__s3_3(n2331_3)) → tt, rt ∈ Ω(1 + n23313 + n233132)
Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)
The following defined symbols remain to be analysed:
U31
They will be analysed ascendingly in the following order:
isNat = activate
isNat = U31
isNat = plus
activate = U31
activate = plus
U31 = plus
(22) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol U31.
(23) Obligation:
Innermost TRS:
Rules:
U11(
tt,
V2) →
U12(
isNat(
activate(
V2)))
U12(
tt) →
ttU21(
tt) →
ttU31(
tt,
N) →
activate(
N)
U41(
tt,
M,
N) →
U42(
isNat(
activate(
N)),
activate(
M),
activate(
N))
U42(
tt,
M,
N) →
s(
plus(
activate(
N),
activate(
M)))
isNat(
n__0) →
ttisNat(
n__plus(
V1,
V2)) →
U11(
isNat(
activate(
V1)),
activate(
V2))
isNat(
n__s(
V1)) →
U21(
isNat(
activate(
V1)))
plus(
N,
0') →
U31(
isNat(
N),
N)
plus(
N,
s(
M)) →
U41(
isNat(
M),
M,
N)
0' →
n__0plus(
X1,
X2) →
n__plus(
X1,
X2)
s(
X) →
n__s(
X)
activate(
n__0) →
0'activate(
n__plus(
X1,
X2)) →
plus(
activate(
X1),
activate(
X2))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
X) →
XTypes:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s
Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n3960_3)) → gen_n__0:n__plus:n__s3_3(n3960_3), rt ∈ Ω(1 + n39603)
isNat(gen_n__0:n__plus:n__s3_3(n2331_3)) → tt, rt ∈ Ω(1 + n23313 + n233132)
Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
isNat(gen_n__0:n__plus:n__s3_3(n2331_3)) → tt, rt ∈ Ω(1 + n23313 + n233132)
(25) BOUNDS(n^2, INF)
(26) Obligation:
Innermost TRS:
Rules:
U11(
tt,
V2) →
U12(
isNat(
activate(
V2)))
U12(
tt) →
ttU21(
tt) →
ttU31(
tt,
N) →
activate(
N)
U41(
tt,
M,
N) →
U42(
isNat(
activate(
N)),
activate(
M),
activate(
N))
U42(
tt,
M,
N) →
s(
plus(
activate(
N),
activate(
M)))
isNat(
n__0) →
ttisNat(
n__plus(
V1,
V2)) →
U11(
isNat(
activate(
V1)),
activate(
V2))
isNat(
n__s(
V1)) →
U21(
isNat(
activate(
V1)))
plus(
N,
0') →
U31(
isNat(
N),
N)
plus(
N,
s(
M)) →
U41(
isNat(
M),
M,
N)
0' →
n__0plus(
X1,
X2) →
n__plus(
X1,
X2)
s(
X) →
n__s(
X)
activate(
n__0) →
0'activate(
n__plus(
X1,
X2)) →
plus(
activate(
X1),
activate(
X2))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
X) →
XTypes:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s
Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n3960_3)) → gen_n__0:n__plus:n__s3_3(n3960_3), rt ∈ Ω(1 + n39603)
isNat(gen_n__0:n__plus:n__s3_3(n2331_3)) → tt, rt ∈ Ω(1 + n23313 + n233132)
Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
isNat(gen_n__0:n__plus:n__s3_3(n2331_3)) → tt, rt ∈ Ω(1 + n23313 + n233132)
(28) BOUNDS(n^2, INF)
(29) Obligation:
Innermost TRS:
Rules:
U11(
tt,
V2) →
U12(
isNat(
activate(
V2)))
U12(
tt) →
ttU21(
tt) →
ttU31(
tt,
N) →
activate(
N)
U41(
tt,
M,
N) →
U42(
isNat(
activate(
N)),
activate(
M),
activate(
N))
U42(
tt,
M,
N) →
s(
plus(
activate(
N),
activate(
M)))
isNat(
n__0) →
ttisNat(
n__plus(
V1,
V2)) →
U11(
isNat(
activate(
V1)),
activate(
V2))
isNat(
n__s(
V1)) →
U21(
isNat(
activate(
V1)))
plus(
N,
0') →
U31(
isNat(
N),
N)
plus(
N,
s(
M)) →
U41(
isNat(
M),
M,
N)
0' →
n__0plus(
X1,
X2) →
n__plus(
X1,
X2)
s(
X) →
n__s(
X)
activate(
n__0) →
0'activate(
n__plus(
X1,
X2)) →
plus(
activate(
X1),
activate(
X2))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
X) →
XTypes:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s
Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n5_3)) → gen_n__0:n__plus:n__s3_3(n5_3), rt ∈ Ω(1 + n53)
isNat(gen_n__0:n__plus:n__s3_3(n2331_3)) → tt, rt ∈ Ω(1 + n23313 + n233132)
Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)
No more defined symbols left to analyse.
(30) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
isNat(gen_n__0:n__plus:n__s3_3(n2331_3)) → tt, rt ∈ Ω(1 + n23313 + n233132)
(31) BOUNDS(n^2, INF)
(32) Obligation:
Innermost TRS:
Rules:
U11(
tt,
V2) →
U12(
isNat(
activate(
V2)))
U12(
tt) →
ttU21(
tt) →
ttU31(
tt,
N) →
activate(
N)
U41(
tt,
M,
N) →
U42(
isNat(
activate(
N)),
activate(
M),
activate(
N))
U42(
tt,
M,
N) →
s(
plus(
activate(
N),
activate(
M)))
isNat(
n__0) →
ttisNat(
n__plus(
V1,
V2)) →
U11(
isNat(
activate(
V1)),
activate(
V2))
isNat(
n__s(
V1)) →
U21(
isNat(
activate(
V1)))
plus(
N,
0') →
U31(
isNat(
N),
N)
plus(
N,
s(
M)) →
U41(
isNat(
M),
M,
N)
0' →
n__0plus(
X1,
X2) →
n__plus(
X1,
X2)
s(
X) →
n__s(
X)
activate(
n__0) →
0'activate(
n__plus(
X1,
X2)) →
plus(
activate(
X1),
activate(
X2))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
X) →
XTypes:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s
Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n5_3)) → gen_n__0:n__plus:n__s3_3(n5_3), rt ∈ Ω(1 + n53)
Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)
No more defined symbols left to analyse.
(33) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
activate(gen_n__0:n__plus:n__s3_3(n5_3)) → gen_n__0:n__plus:n__s3_3(n5_3), rt ∈ Ω(1 + n53)
(34) BOUNDS(n^1, INF)